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This paper describes a combined computational and experimental study of the f low 
between two contrarotating discs for - 1  < F < 0 (where F is the ratio of the speed of 
the slower disc to that of the faster one) for the case where there is a superposed radial 
outf low of air. The computations were conducted using an'e l l ipt ic  solver and a 
low-Reynolds-number k-e turbulence model, and velocity measurements were made 
using a laser-Doppler anemometry system. Two basic f low structures can occur: 
Batchelor-type flow, where there are separate boundary layers on each disc with a rotating 
core of f luid between, and Stewartson-type flow, where there is virtually no core rotation. 
The main effect of a superposed f low is to reduce the core rotation and to promote the 
transition from Batchelor-type f low to Stewartson-type flow. For most of the results, there 
is good agreement between the computed and measured velocities. Computed moment 
coefficients show that, for F = - 1 ,  superposed f low has little effect on Cm: an accepted 
correlation of Cm for a free disc should provide a useful estimate for design purposes. 
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1. I n t r o d u c t i o n  

One of the practical applications for contrarotating discs is in 
gas-turbine aeroengines where, in future generations of 
ultra-high-bypass-ratio engines, contrarotating turbines may 
be used to drive contrarotating fans. This has the advantage 
of eliminating a row of stator nozzles, thereby reducing the size 
and weight of the engine. The designer of the internal-air 
systems uses a superposed radial flow of air to cool the turbine 
discs and to remove the heat generated by windage, and there 
is comparatively little information on the flow in contrarotating 
disc systems. 

A schematic diagram of the flow structure is shown in Figure 
1. The flow is radially outwards in the boundary layers on the 
discs and radially inward between the boundary layers. The 
precise flow structure depends on F, where F is the ratio of the 
angular speed of the slower disc, ~')2, to  that of the faster one, 
f~x, on the rotational Reynolds number, Re~ = pf~lb2/li, and 
on the nondimensional flowrate, Cw = ~h/ltb. F = 0 corre- 
sponds to the rotor-stator case, considered in detail by Owen 
and Rogers (1989); F = - 1  corresponds to antisymmetrical 
contrarotation. 

Two different flow structures have been predicted for 
- 1  < F < 0. Batchelor (1951), from consideration of the 
laminar flow between two infinite discs, deduced that for F = 0, 
the rotor-stator case, there would be radial outflow in a 
boundary layer on the rotating disc, inflow in a boundary layer 
on the stationary one, and a core of rotating fluid between. For 
F = - 1 ,  he predicted radial outflow in boundary layers 
on both discs and radial inflow in a thin shear layer in the 
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midplane (z/s = ½), with a rotating core on either side of the 
shear layer. Stewartson (1953) predicted different flow 
structures: for F = 0, there would be no boundary layer on the 
stator and no rotation outside the boundary layer on the rotor; 
for F = - 1 ,  there would be no contrarotating cores of fluid, 
and radial inflow would occur in the single, nonrotating core 
between the boundary layers on the discs. It is now apparent 
that there are no unique solutions for the flow between infinite 
discs, and Batchelor's and Stewartson's solutions are both 
possible; the interested reader is referred to the review by 
Zandbergen and Dijkstra (1987) for a detailed account. 

Dijkstra and van Heijst (1983) carried out a comprehensive 
computational and experimental study for laminar flow 
for -0.825 < F < 0 and values of Re~ up to 2.04 x 105. For 
the experiments, they used a rig, with discs around 1 m 
diameter spaced 35 mm apart (G = 0.07), filled with water or 
with a mixture of water and glycerol. For F = 0, they found 
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Batchelor-type flow, with boundary layers on the rotor and 
stator and a rotating core between. For  -0 .825 < F < -0.15,  
they found a two-cell structure with an outer cell in which 
Batchelor-type flow occurred and an inner one with 
Stewartson-type flow; the two cells were separated by a 
streamline that stagnated on the slower disc. No reliable 
computational or experimental data were obtained for 

- 1 < F < -0.825, where wavy instabilities were observed. 
Graber et al. (1987) reported extensive experimental 

measurements for enclosed rotating-disc systems with a 
stationary shroud. Their pressurized rig consisted of two discs 
of 0.534 m diameter that could be rotated independently in 
either direction at speeds up to 3,500 rev/min. For  their tests, 
G =0.328, and the ratio of inner and outer radii was 
a/b = 0.248. They made the measurements for Re+ = 4 x 106, 
8 x 106, and 1.6 × 107 and for F = - 1 ,  0, and 1 with 
superposed flow rates of air in the range -0 .14  < 2x< 0.14, 
where 2x( = CwRe~ °'a) is the turbulent flow parameter, and the 
negative sign indicates radial inflow. They observed that the 
moment coefficient, Cm, for F = - 1 was approximately twice 
that for F = 0 (the rotor-stator case); the insertion of a 
stationary disc between the contrarotating ones reduced the 
moment coefficient to the same level as that of the rotor-stator 
system. 

Morse (1988) used an elliptic solver, featuring a modified 
version of the Launder-Sharma (1974) low-Reynolds-number 
k-e (LR k-e) turbulence model, to compute the axisymmetric 
flow inside rotating cavities; details of these LR k-e models are 
given in the appendix. Morse initially used a modified version of 
the near-wall damping function, f , ,  proposed by Launder and 
Sharma, but in his later work (Morse 1991a, 1991b) he 
employed a version of f ,  similar to that proposed by Nagano 
and Hishida (1987). Using these modified LR k-e models, 
Morse was able to make accurate predictions of the flow in a 
number of rotating-disc systems at rotational Reynolds 
numbers as high as Re,  = 107, typical of the values found in 
engines. Of particular relevance to the work considered here 
are the computations of Morse (1991a) for flow between 
contrarotating discs for G = 0 . 1 ,  1 0 5 < R % <  107, and 
- 1  < F < 0; like Graber et al. (1987), Morse considered the 
case where the peripheral shroud was stationary. For  the 
turbulent contrarotating case, Morse found that there was a 
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stagnation ring on the slower disc where the radial inflow and 
outflow meet, which is consistent with the findings of Dijkstra 
and van Heijst for laminar flow. 

Gan et al. (1993) conducted a combined computational and 
experimental study of the flow between contrarotating discs 
with G = 0.12, 10 ~ < Re,  < 1.25 x 106, 0 < C ,  < 9,280, and 
F = -  1. For  the experiments (using the rig described in 
Section 3), the velocities were measured by laser-Doppler 
anemometry (LDA). For  the computations, a multigrid elliptic 
solver was used (see Section 2) together with a variant of 
Morse's (1991a, 1991b) LR k-e turbulence model. Computa- 
tions using the turbulence model produced the Stewartson-type 
flow structure in contrast with the computations for laminar 
flow (where all turbulent terms were set to zero), which 
produced the Batchelor-type structure. The laminar flow 
structure, while providing a valid solution of the Navier-Stokes 
equations, is intrinsically unstable, and no experimental 
evidence was found for its physical existence, even for rotational 
Reynolds-number as low as x2R% = 2.2 x 104. Although the 
turbulence model exhibited premature transition from laminar 
to turbulent flow in the boundary layers on the discs, the 
agreement between the computed and measured velocities was 
mainly good over a wide range of flow rates and rotational 
speeds. 

A combined computational and experimental study of the 
transition from turbulent Batchelor-type flow at F = 0 to 
Stewartson-type flow at F = - 1  was investigated by Kilic et 
al. (1994) for the case of C ,  = 0. The turbulent computations 
showed that, as found by Dijkstra and van Heijst for laminar 
flow, at intermediate values of F a two-cell structure is formed 
with Batchelor-type flow in the outer cell and Stewartson-type 
flow in the inner one, as shown in Figures 2 and 3 for 
R % =  1.25 x 106. For  F = 0  and -0 .2 ,  the single-cell 
Batchelor-type flow can be seen in Figure 2, and Figure 3 shows 
that there is zero radial velocity in the rotating core between 
the boundary layers. For  F = - 1 ,  the single-cell Stewartson- 
type flow occurs with radial inflow in the (virtually) nonrotating 
core. For  - 0 . 8  < F_< -0 .4 ,  Figure 2 shows a two-cell 
structure with a stagnation point on the slower disc at x = xst; 
the radius of the stagnation point increases as F decreases. 
For  this two-cell structure, Figure 3 confirms that Batchelor- 
type flow, with a rotating core, occurs for x > xs,, and 

N o t a t i o n  

a 

b 
Cm 

C,  
f. 

G 
Gc 
k 

M 
r 

RT 
R %  

s 

sc 
ut 

v.v,,v= 

Inner radius of disc 
Outer radius of disc 
Moment coefficient for one side of the disc, 
( = M/½pf~2b 5) 
Nondimensional flow rate (=  gn/#b) 
Near-wall damping function in turbulence 
model 
Gap ratio ( = s/b) 
Shroud-clearance ratio (=  so~b) 
Turbulent kinetic energy 
Mass flow rate 
Moment on one side of disc 1 
Radial coordinate 
Turbulent Reynolds number ( = pk2/eg) 
Rotational Reynolds number ( = pf~lb2/#) 
Axial gap between discs 
Axial clearance between shrouds 
Friction velocity (=  x/r~/p) 
Velocity components referred to stationary 
cylindrical coordinates (r, ~, z) 

X 

Y 
y +  
Z 

Nondimensional radius (=  r/b) 
Normal distance from wall 
Nondimensional near-wall distance ( = pu~y/l~) 
Axial coordinate measured from disc 1 

Greek symbols 

F Ratio of angular speeds of contrarotating discs 
(=  t~2/f~l) 

e Rate of dissipation of turbulent kinetic energy 
2r Turbulent flow parameter (=  CwRe~ "°'a) 
/~ Dynamic viscosity 
p Density 
Zw Wall shear stress 
Q Angular speed of disc 

Subscripts 

1,2 Faster (left-hand-side) disc, slower (right-hand- 
side) disc 
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Figure 2 Computed streamlines for Re~ = 1.25 × 106, G w = O  

Stewartson-type flow, with a nonrotating core, occurs for 
x < x,t. In the main, these computed velocities were in very 
good agreement with the measurements. 

It is the objective of this paper to present, for the first time, 
the results of a combined computational and experimental 
study of the effect of a superposed flow on the turbulent flow 
structure between rotating discs for - 1 < F < 0. Sections 2 
and 3 outline the computational method and the experimental 
apparatus, respectively, and the comparison between computa- 
tions and measurements is presented in Section 4. 

2. C o m p u t a t i o n a l  m e t h o d  

The Reynolds-averaged Navier-Stokes equations for steady, 
axisymmetric, incompressible flow were solved in conjunction 
with an LR k-e turbulence model. The code used was a 
modified version of the elliptic multigrid solver described by 
Vaughan et al. (1989), where finite-volume equations were 
obtained using the control-volume approach of Patankar 
(1980) together with the SIMPLEC pressure-correction 
algorithm proposed by van Doormaal and Raithby (1984). The 
multigrid method was developed by Vaughan et al. for 
turbulent flow from the full-approximation scheme employed 
by Lonsdale (1988) to solve the Navier-Stokes equations for 
laminar flow between corotating discs; a three-level V-cycle 
was used for the computations discussed below. Details of the 
conservation equations and the turbulence model are given in 
the appendix. 

Gan et al. (1993) used the above code, together with a variant 
of the Morse (1991a, 1991b) LR k-e turbulence model, to 
compute the flow between contrarotating discs for F = - 1 .  
Kilic (1993) used both the Morse turbulence model and the 

original Launder and Sharma (1974) model to compute the 
flow for - 1 < F < 0. As can be seen from the appendix, the 
Morse model uses a near-wall damping function, f , ,  based on 
the nondimensional distance, y+, from the nearest wall. This 
function can cause difficulties in corner regions, where two 
boundary layers interact, resulting in convergence problems for 
the multigrid solver at high values of Re~, and the results 
presented in this paper were obtained using only the 
Launder-Sharma turbulence model. (Computed velocity 
profiles produced using either of these models were, in the main, 
in good agreement with most of the measured values.) 

The computational geometry was based on that of the rig 
described in Section 3, where the radius ratio was a/b = 0.13 
and the gap ratio was G = 0.12. For the solid boundaries (z = 0, 
z = s, r = a, r = b), no-slip conditions were used. For the axial 
clearance, so, between the shrouds attached to the discs at 
r = b, it was assumed that the flow left radially with linear swirl: 

th 
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Figure 4 Schematic layout of rotating-disc rig and LDA system 

The assumed inlet conditions did not precisely match those 
in the experiment, where flow was admitted axially through a 
central hole in disc 1 and entered the cavity between the two 
discs radially through porous tubes. Some computations were 
carried out using other inlet conditions, but, away from the 
inlet, the effect on the computed velocity distribution was 
relatively small. 

Tests were conducted using a number of convergence criteria 
including RMS ®, the root-mean-square change in the 
computed variables from one iteration to the next, the total 

O 
absolute value of the residuals, and R=,., the maximum value 
of the residuals for each variable. Converged solutions were 
achieved for RMS ® ~ 10-* and R=a , ~ 10 -5 for all variables. 
Grid-dependency tests were also conducted with up to 
91 x 115 (axial x radial) nodes, and it was found that a grid 
with 67 x 67 nodes (contracted to the boundaries) gave sensibly 
grid-independent results. (Morse (1991b) chose grid-expansion 
factors that ensured that the grid point adjacent to a wall was 
located at a nondimensional distance ofy  ÷ < 0.5; this criterion 
was used for the computations presented here.) 

The computations were conducted on one i860 node of a 
16-node Meiko parallel-computing facility. The time to achieve 
a converged solution depended on F, Re~, and C , ,  but typical 
times for 91 x 115 nodes ranged from one to two hours. 

Further details of the computational method are given by 
Kilic (1993). 

3. E x p e r i m e n t a l  a p p a r a t u s  

A schematic layout of the rotating-disc rig and LDA system is 
shown in Figure 4. 

The discs, which were 762 mm in diameter, were in- 
dependently rotated at up to 1,500 rev/min by two thyristor- 
controlled electric motors. A peripheral shroud was attached 
to each disc, the axial clearance between the shrouds was less 
than 4 mm, and the axial spacing between the discs produced 
a gap ratio of G = 0.12. Air was supplied through a central 
hole in disc 1, and it entered the cavity between the two discs 
via a porous tube, 100 mm in diameter, attached to the center 
of each disc. This inlet arrangement was intended to create a 
uniform radial source, but, as discussed below, the actual flow 
was nonuniform. The flow rate of the air was measured, with 
an uncertainty of +3  percent, using an orifice plate in a 
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stationary pipe upstream of the rig. Seals between the rotating 
and stationary pipes reduced the leakage to a negligible level. 

Disc 2 was made from transparent polycarbonate, and a 
single-component TSI laser-Doppler anemometry (LDA) 
system was used to measure the radial and tangential 
components of velocity. The LDA system was arranged in a 
back-scatter mode, and a TSI IFA 750 burst correlator was 
used to measure the Doppler frequency created by scattering 
from micron-sized oil particles seeded into the air. With the 
optical "probe-volume" of the LDA system focused inside the 
polycarbonate disc, the tangential component of velocity of the 
disc could be measured: the difference between this and the 
independently measured angular speed of the disc was typically 
less than 0.5 percent of the speed. 

4. C o m p a r i s o n  b e t w e e n  c o m p u t a t i o n s  
and  m e a s u r e m e n t s  

4.1. Ve loc i ty  pro f i les  

Figures 5 to 9 show comparisons between the computed and 
measured nondimensional radial and tangential components of 
velocity (V,/fllr and V,/Qlr ) for Re, = 1.25 x 106, C w = 6,100, 
and F = 0, -0 .4 ,  -0 .6 ,  -0 .8 ,  and - 1 ,  respectively. These 
should be compared with the computed velocities for the 
equivalent cases with Cw = 0 in Figure 3. 

For F = 0, Figure 5 shows that a superposed flow reduces 
both the core rotation and the radial inflow on the stationary 
disc. For  x = 0.6, the computations show that the core rotation 
and the radial inflow are negligible, although the measured 
velocities still show weak rotation and inflow at this radius. 
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For C ,  = 0, Figure 3 shows that V,/Qlr ~ 0.4 in the core for 
F = 0 .  

For  F = -0 .4 ,  Figure 6 shows no evidence of Batchelor-type 
flow: there is radial outflow in boundary  layers on both discs 
with radial inflow in the (virtually) nonrotat ing core between 
the boundary  layers. This is in contrast to the case with C ,  = 0, 
where Figure 3 shows Batchelor-type flow for x > 0.6 with 
radial inflow on the slower disc and core rotation between the 
boundary  layers, 

For  F = -0 .6 ,  -0 .8 ,  and - 1, Figures 7, 8, and 9 show that 
Stewartson-type flow occurs everywhere, with radial outflow 
on both discs and inflow in the core. Even for C ,  = 0, Figure 
3 shows that Stewartson-type flow occurs at these values of F. 

With few exceptions, the computat ions and measurements 
are in very good agreement. Even when C ,  = 0, Batcheior-type 
flow is converted to Stewartson-type flow as F is reduced from 
0 to - 1. For  Cw > 0, the transition from Batchelor-type flow 
to Stewartson-type flow occurs at larger values of F than for 
C ,  = 0. 

In an engine, the rotational Reynolds number  is of the order 
of 107 , which is considerably higher than that achievable on 
the existing rig. It is useful to relate the superposed flow rate 
to the rotational speed using the turbulent  flow parameter, 
2T = CwRe~ °'a (see Owen and Rogers 1989). A value of 
2x = 0.22 corresponds to the flow rate entrained by a free disc 
(that is, a disc rotating in an infinite environment), and in 
engines, AT is usually significantly less than this. In experiments, 
it is appropriate to keep 2r, rather than C, ,  in the engine range, 
even if a representative value of Re,  cannot  be achieved. 

The effect of ).x on the velocity distribution, for F = - 1 and 
Re,  ~ 4 x 105, is shown in Figures 10 to 13. In Figure 10, 
where 2T = 0.086, the velocity distribution for x > 0.8 is similar 
to that in Figure 9, for Re,  = 1.25 x l0 s, where ).x = 0.081. 
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1.25 × 108 , F = - 0 . 8 ,  Cw = 6,100 
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For the smaller values of x, the difference between the 
computed and measured values in Figure 10 is attributed partly 
to the inlet conditions. As explained in Section 3, porous tubes 
were used in the experimental rig to create a uniform source 
at x = 0.13. In practice, the flow is skewed, and symmetry about 
the midplane is not achieved at the smaller values of x. Another 
difference is caused by the fact that, at this low value of Re+, 
the turbulence model produces laminar flow in the boundary 
layers for x < 0.7, whereas the measurements show that 
turbulent flow occurs. (In Figure 9, for R% = 1.25 x 106, both 
computations and experiments show that turbulent flow 
occurs.) 

In Figure 11, for ~'T = 0.14, both the computations and the 
measurements show evidence of a source region at the smaller 
values of x. In the source region, the superposed flow is greater 
than that entrained by the boundary layers on the discs, and 
so there is a radial outflow between the boundary layers. The 
entrainment for laminar flow is less than for turbulent flow, 
and consequently the computations overestimate the size of the 
source region. 

Figures 12 and 13, for 2T = 0.21 and 0.31, show that the size 
of the source region increases as 2r increases. Again, the 
computations show laminar flow in the boundary layers at the 
smaller radii, but the agreement between the measured and 
computed velocities improves at the larger radii where the 
computed flow is turbulent. 

4.2. Moment coefficients 

The frictional moment, M, on the rotating discs was not 
measured for the rig described in Section 3. 

For  the case of the free disc and for rotor-stator systems, 
there have been many measurements of the moment coefficient, 
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Cm, as described by Owen and Rogers (1989). The most 
accurate equation for Cr, for the turbulent free disc is that 
derived by Dorfman (1963), where 

C m = 0.491 (log10 R%) -2"5s (1) 

This equation is in good agreement with the available 
experimental data for free discs for 7 x 105 < Re# < 7 x 106; 
transition from laminar to turbulent flow occurs for 
Re# > 3 x 105, although disc roughness or environmental 
disturbances can cause premature transition at lower values of 
R%. 

For enclosed rotor-stator systems (F = 0), in the absence of 
a superposed flow, Daily and Nece (1960) made measurements 
of C~ for 0.0127 < G < 0.217 and 103 < Re# < 107. There are 
four flow regimes, depending on G and R%, but for the case 
of turbulent flow with separate boundary layers on the rotor 
and stator, which is relevant to the conditions considered here, 
their empirical correlation is 

C,, = 0.051 G °'1 Re~ °'2 (2) 

For contrarotating discs, for F = - 1 ,  G = 0.1, and 106< 
Re# < 107, Morse (1991a) correlated his computations for 
turbulent flow by 

C~ = 0.0319 Re~ 0"1375 (3) 

Morse's computations, like the experimental results of Graber 
et al. (1987), showed that Cm for F = - 1  was approximately 
double that for F = 0. It should be noted that both Morse and 
Graber et al. considered the case where the peripheral shroud 
was stationary. 

The elliptic solver described in Section 2 was used to 
compute Cm for the free disc, for rotor-stator systems, and for 
contrarotating discs. For the free-disc computations, the 
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Figure 13 Computed and measured velocity profiles for Re~ = 
3.93 x 105, F = - 1 ,  Cw = 9,378, 2 T = 0.3139 

transition from laminar to turbulent flow started at 
R% ~ 1.8 x 105; for smaller values of R%, the computations 
were in good agreement with Cochran's (1934) exact solutions 
of the Navier-Stokes equations; for Re¢ > 1.8 x 105, the 
computations approached Dorfman's turbulent correlation 
(Equation 1), and for Re¢ > 4 x 106, the difference between the 
computations and this equation was less than 1 percent. The 
computed moment coefficients were also compared with 
the Daily and Nece correlations (Equation 2). For G = 0.08 
and Re~ = 106, the computed value of C m was 13 percent lower 
than the correlations; for G = 0.0637 and R% = 4.4 x 106, it 
was 2 percent lower. 

Table 1 shows the computed values of Cm for the 
antisymmetrical contrarotating case, F = - 1 ,  for Cw = 0, 
0.06 < G < 0.24, and 1.25 x 106< Re, < 107; the geometry 
was based on the rig described in Section 3 (rotating shrouds 
and a/b = 0.13). Also shown for comparison are the free-disc 
results according to Equation 1. For G = 0.06, the computed 
values of C m for F = - 1 are close to the free-disc values, and 

Tab le  1 Computed moment coefficients for F = - 1 ,  1.25 x 
10 e < R e ~ < 1 0 7  and 0 . 0 6 <  G < 0 . 2 4  

ICMI x 103 

Free 
Re~ x 10 -e G = O . 0 6  G = 0 . 1 2  G = 0 . 1 8  G = 0 . 2 4  disc 

1.25 4.60 4.19 4.08 3.99 4.63 
2 4.27 3.87 3.80 3.74 4.25 
4 3.85 3.50 3.44 3.40 3.77 
8 3.53 3.18 3.10 3.09 3.36 

10 3.45 3.09 3.03 3.02 3.24 
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they are also within approximately 2 percent of the Morse 
correlation (Equation 3), which was obtained for G = 0.1. The 
computed values of Cm for G = 0.06 are approximately double 
those given by Equation 2 for the rotor-stator case, as was also 
observed by Graber et al. 

It can be seen from Table 1 that Cm decreases as G increases 
from 0.06 to 0.24; for G > 0.24, the computed values of C m were 
found to be virtually independent of G. The trend of decreasing 
Cm with increasing G for F = - 1  (with rotating shrouds) is 
contrary to the trend of increasing C~ for F = 0 (with a 
stationary shroud), and some explanation is required. For 
F = 0, there is a core of rotating fluid between the boundary 
layers on the rotor and stator, and the moment on the rotor 
is less than that for the free-disc case. Increasing G increases 
the width of the stationary shroud, which in turn reduces the 
core rotation and increases the moment on the rotating disc. 
For F = - 1 ,  the sum of the moments on the discs and the 
rotating shrouds equals the rate of change of angular 
momentum given to the recirculating fluid; as G increases, the 
moment on the shroud increases and those on the discs 
decrease. Computations of Cm were also conducted 
for F = - 1, G = 0.12, 1.26 x l0 s < R% < 1.25 x 106, and 
2,300 < C,  < 9,400. Although the effect of a superposed flow 
was to increase Cm, the effect was small, as found 
experimentally by Graber et al.: increasing 2 r from zero to 0.2 
(the approximate free-disc entrainment rate) only increases Cm 
by 6 percent. For most gas-turbine cooling systems, 2T < 0.2, 
and so the effect of cooling flow rate on the disc windage is 
likely to be negligible: the correlation for the free disc (Equation 
1) should provide a reasonable estimate for C~. 

Although, as stated above, the moment coefficients were not 
measured on the experimental rig, Nusselt numbers were 
determined during a separate series of tests. The comparison 
between the computed and measured Nusselt numbers will be 
reported elsewhere, but it is worth noting that the agreement 
was mainly good: the Reynolds analogy between the moment 
coefficients and the Nusselt numbers (see Owen and Rogers 
1989) suggests that if the Nusselt numbers are accurately 
predicted, then the computed moment coefficients should also 
be accurate. 

5. C o n c l u s i o n s  

For G = 0.12, R% = 1.25 x 106, C w = 6,100, and - 1 < F < 0, 
the computed velocity distributions, obtained using the 
Launder and Sharma (1974) low-Reynolds-number k-e 
turbulence model, are mainly in very good agreement with the 
experimental measurements on a purpose-built contrarotating- 
disc rig. The main effect of a superposed flow is to accelerate 
the transition from a Batchelor-type flow structure to a 
Stewartson-type one. Whereas Batchelor-type flow had 
previously been observed when Cw = 0 for the rotor-stator 
case, F = 0, a value of C ,  = 6,100 reduced the core rotation 
and the radial inflow on the stationary disc. For F < -0.4,  
there was no evidence of Batchelor-type flow, and Stewartson- 
type flow occurred everywhere; for F = - 0 . 4 ,  Batchelor- 
type flow had previously been observed for C ,  = 0. 

For F = - I  and R % = 4 x  l0 s , the computations for 
0.086 < 2T < 0.31 showed laminar flow in the boundary layers 
for the smaller values of x, whereas the measurements showed 
that the flow was turbulent. For the larger values of x, there 
was mainly good agreement between the measured and 
computed velocities. The results for 2 r > 0.14 showed evidence 
of a source region, at the smaller values of x, where the flow 
is radially outwards in the core between the boundary layers, 
and the size of the source region increases as 2T increases. 

Moment coefficients were not measured on the experimental 

rig, but values of Cm were computed for F = - 1 ,  Cw = 
0, 0.06 < G < 0.24, and 1.25 x l0 s < R% < 107. The computed 
values of Cm for G = 0.06 are in close agreement with the 
computations of Morse (1991a) for G = 0.1, and both are close 
to Dorfman's (1963) widely accepted correlation of Cm for the 
free disc. The current computations show that C m decreases as 
G increases, but this effect is negligible for G > 0.24. For 
F = - 1 and Cw > 0, the computations show that a superposed 
flow has only a small effect on Cm: the value of Cm for Lr = 0.2 
is less than 6 percent larger than that for 2T = 0. It appears, 
therefore, that Dorfman's free-disc correlation should provide 
a useful estimate of Cm for the designers of cooling systems of 
gas-turbine engines, where 2 T is usually less than 0.2. 
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A p p e n d i x  

The axisymmetric equations for the conservation of mass, 
momentum, and the turbulence quantities k and e can be 
written for incompressible flow in cylindrical-polar coordinates 
by 

1 a + av, = o 

where • can represent Ix,, V~, V~, k, or e, and values of F,, F=, 
and S® are given in Table A1. 

For the LR k-e  turbulence model 

#at =/~ + #T 

pk 2 
#T = C , f ,  - -  

g 

P= L \\~/ \ar/ + \~ + ~I 

(av+~+ (r a 

Values and expressions for C,, f , ,  and other turbulence 
quantities are given in Table A2. 

Table A1 Components of the momentum equations 
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Table A2 Terms appearing in the k-e turbulence models 

Launder and Sharma Morse 
Term High RT model model (LS) model (M) 

C,, 0.09 
C,1 1.44 
C,2 1.92 

D 

E 

F 

fl 1.0 

f, 1.0 

ak 1.0 
cr~ 1.3 

0.09 
1.44 
1.92 

L\ az / \ ar } ] 

"__" F(a v,y (a vo 7 (a v,7 + (a v.Tl 
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